

MICHAEL PULVERICH • JÖRG SCHIETINGER (Hrsg.)

Handbuch Kommissionierung

Effizient picken und packen

Handbuch Kommissionierung

⇒ Effizient picken und packen

Herausgeber: Michael Pulverich Jörg Schietinger

1. Auflage 2009

© 2009 Verlag Heinrich Vogel, in der Springer Transport Media GmbH, Neumarkter Str. 18, 81673 München

1. Auflage 2009 Stand September 2009

Umschlaggestaltung: Bernd Walser, Silvia Hollerbach

Lektorat: Ulf Sundermann Titelbild: Wincanton

Herstellung: Silvia Hollerbach

Satz: satz-studio gmbh, Asbach-Bäumenheim

Druck: Kessler Druck+Medien, Michael-Schäffer-Str. 1, 86399 Bobingen

Die Springer Transport Media GmbH ist Teil der Fachverlagsgruppe Springer Science+Business Media.

Das Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Das Werk ist mit größter Sorgfalt erarbeitet worden. Eine rechtliche Gewähr für die Richtigkeit der einzelnen Angaben kann jedoch nicht übernommen werden.

ISBN 978-3-574-26094-0

4

Vor	wort .	1	12
=	TEIL	1: Grundlagenwissen	15
1		hrung und Grundlagen	
	1.1	Begriffe und Definitionen	
	1.2	Stellenwert der Kommissionierung	
	1.3	Anforderungen	
	1.4	Aufgaben und Funktionen	
	1.5	Einflussfaktoren	
	1.6	Problemfelder	
2		matik der Kommissioniersysteme	
_	2.1	Materialfluss	
	2.2	Organisation	
		2.2.1 Auftragszahl	
		2.2.2 Form der Bearbeitung	
		2.2.3 Grad der Vereinzelung	
		2.2.4 Zonigkeit der Kommissionierung	
	2.3	Organisationsvarianten	
	2.5	2.3.1 Hinweise für die Wahl der Ablauforganisation	
	2.4	Informationsfluss (Informationsbereitstellung)	
	2.7	2.4.1 Kommissionierliste	
		2.4.2 Pick by Light	
		2.4.3 Pick by Voice	
		2.4.4 Pick by Terminal	
		2.4.5 Pick by MDE	
		2.4.6 Wahl des Kommunikationssystems	
		2.4.7 Neue Verfahren: Pick by Point	
3	Planu	ng von Kommissioniersystemen.	
,	3.1	Einführung	
	3.2	Planungsphasen	
	J.2	3.2.1 Phase 1: Konzeptionsplanung, System- und Layoutplanung	
		3.2.2 Phase 2: Detailplanung	
		3.2.3 Phase 3: Ausschreibung.	
		3.2.4 Phase 4: Realisierung	
	3.3	Basisdaten für die Planung von Kommissioniersystemen	
	3.4	Auswahl der möglichen Kommissioniersysteme	
	3.5	Variantenvergleich der Kommissioniersysteme	
	3.6	Fazit	
4		razit	
4	4.1	Einleitung	
		Aufbau und Vorgehen	
	4.3	Der Faktor Mensch	
		4.3.1 Verringerung von Greif- und Totzeiten	
	4.4	Systembeispiele von Mann-zur-Ware-Systemen	
		4.4.1 Mann-zur-Ware-Kommissionierung von Kleinteilen	
		4.4.2 Mann-zur-Ware-Kommissionierung von Mittelteilen	
	4.5	4.4.3 Mann-zur-Ware-Kommissionierung von Langteilen	
	4.5	Ware-zum-Mann-Kommissioniersysteme	
		4.5.1 WzM-Kommissioniersysteme für Kleinteile	16

		4.5.2 WzM-Kommissioniersysteme für Mittelteile (auf Paletten)	101
		4.5.3 WzM-Kommissionierung von Langteilen	
	4.6	Automatische Kommissioniersysteme, Sondersysteme	105
5	Infor	mationstechnologische Unterstützung der Kommissionierung	
	5.1	Einleitung	108
	5.2	Von der einfachen Kommissionieraufgabe zum komplexen Kommissioniersystem	108
	5.3	IT-Systeme im Logistikzentrum	110
	5.4	Analyse der Anforderungen an IT-gestützte Kommissioniersysteme	112
		5.4.1 Analyse der Auftragsstruktur	112
		5.4.2 Analyse der Artikelstruktur	
		5.4.3 Analyse der Zeitanteile in der Kommissionierung	113
		5.4.4 Berücksichtigung des Geschäftsmodells des Unternehmens	114
		5.4.5 Berücksichtigung vorhandener Logistiktechnik- und Gebäudestrukturen	115
		5.4.6 Planungsbasis	115
	5.5	Fallbeispiel: Reorganisation/Optimierung eines Kommissioniersystems	116
		5.5.1 Strukturdaten	
		5.5.2 Beschreibung des Kommissioniersystems in der Ausgangssituation	119
		5.5.3 Weiterentwicklung des Kommissioniersystems mit IT-Unterstützung	122
		5.5.4 Kommissioniersystem "Lean Batch"	123
		5.5.5 Ergebnisse	
	5.6	Lagerleitstand / Kommissionierleitstand	
		5.6.1 Aufgaben eines Lagerleitstandes	128
		5.6.2 Mögliche Arbeitsweise eines Lagerleitstandes	129
		5.6.3 Fallbeispiel: Batch-Planung nach Artikellokationen	133
		5.6.4 Fallbeispiel: Prioritätssteuerung	134
	5.6	Zusammenfassung	137
6	Artik	elallokation und Behälterwahl in der Kommissionierung	138
	6.1	Zeitreduzierung durch kürzere Wege	
	6.2	Fallbeispiel Restrukturierung	
	6.3	Definition des Optimums	
	6.4	Weniger Aufwand durch richtige Behälterwahl	
7	Komn	nissionierstrategien: Schleife, Stichgang, Walking the U	
	7.1	Einsatzbereiche	
	7.2	Schleifen- und Stichgangstrategie auf dem Prüfstand	
	7.3	"Walking the U"	
		7.3.1 Vorteile und Nachteile	
	7.4	Vergleich: Schleifenstrategie – Stichgangstrategie – Walking the U	
	7.5	Zusammenfassung	
8		Mensch in der Kommissionierung	
	8.1	Ergonomie in der Kommissionierung	
		8.1.1 Theorie der Ergonomie	
		8.1.2 Praktische Anwendung der Erkenntnisse aus der Ergonomie	
	8.2	Anreizsysteme in der Kommissionierung	
		8.2.1 Einführung und Zielsetzung	
		8.2.2 Grundlagen und Definition von Anreizsystemen	181
		8.2.3 Anreizsysteme als Subsysteme eines strategieorientierten Management- bzw.	
		Führungssystems	
		8.2.4 Arten der Anreize	
		8.2.5 Leistungsmessung	188

		8.2.6 Gestaltung des Anreizsystems	
		8.2.7 Zusammenfassung	
	8.3	Qualitätsmanagement in der Kommissionierung	
		8.3.1 Einführung	
		8.3.2 Qualitätskosten	
		8.3.3 Fehlerarten und Fehlerfolgen in der Kommissionierung	
		8.3.4 Einfluss des Menschen auf die Kommissioniertätigkeit	
		8.3.5 Technische Maßnahmen zur Fehlerreduzierung	205
		8.3.6 Fazit	
9	Contr	olling in der Kommissionierung	
	9.1	Begriffe und Definitionen	
	9.2	Ziele und Aufgaben des Kommissionier-Controllings	216
	9.3	Kennzahlen in der Kommissionierung	
	9.4	Kennzahlen-Grundlagen	
	9.5	Kennzahlensystem Kommissionierung	223
	9.6	Aussagefähigkeit der Kommissionierkennzahlen	
	9.7	Reporting und Visualisierung	
	9.8	Kommissionier-Audit	
	9.9	Erfolgsfaktoren des Kommissionier-Controllings	
	9.10	Fazit	242
		2: Best Practice: Kommissionierung	257
10		rne Kommissioniersysteme in der Handelslogistik:	
		nissionierung in der Würth-Gruppe	
	10.1	Anforderungen an moderne Kommissioniersysteme	
	10.2	Anforderungen an Kommissioniersysteme in der Handelslogistik	
	10.3	"Was möchte der Kunde?"	
	10.4	Praktische Lösungen eines Handelsunternehmens	
		10.4.1 Serielle Kommissioniersysteme	
		10.4.2 Parallele Kommissioniersysteme	
		10.4.3 Informationstechnologien in der Kommissionierung bei Würth	
		10.4.4 Systemvergleich	
	10.5	Jedes Kommissioniersystem kann verbessert und optimiert werden.	
	10.6	Zukünftige Herausforderungen und Systeme	
11	_	geschneidert und effizient: die Ersatzteillogistik der MTU Friedrichshafen	
	11.1	Die Ausgangssituation	
	11.2	Die Lagerkonzeption	
		11.2.1 Vollautomatisches Kleinteilelager	
		11.2.2 Mittelteilelager	
		11.2.3 Großteilelager	
	11.3	Die IT-gestützte Lagerverwaltung und -steuerung	
		11.3.1 Wareneingang	
		11.3.2 Warenausgang	
	11.4	Erfolgsfaktoren und ein bestandener Härtetest	
12	Komn	nissionierung in der Bau-Serviceindustrie am Beispiel der Hilti Deutschland GmbH	
	12.1	Aufgabenstellung und Ziele	
	12.2	Daten zum Distributionscenter Oberhausen	
	12.3	Merkmale und Besonderheiten des Konzepts	
	12/	Klassifikation des Kommissioniersystems	200

	12.5	Daten und Fakten	287
	12.6	Einsatzbereiche des Kommissioniersystems	288
	12.7	Vorteile des gewählten Kommissioniersystems	291
13	ZF Tra	nding – Best Practice im Kfz-Teilehandel	293
	13.1	Einführende Beschreibung	293
	13.2	Umsetzen des TLC Schweinfurt in drei Phasen	
	13.3	Beschreibung der gewählten Lösung des TLCs in Schweinfurt	295
		13.3.1 Konzeption des neuen HRL	295
		13.3.2 Das neue Schnelldreherlager	297
		13.3.3 Einbindung des automatischen Kleinteilelagers (AKL) ins Gesamtkonzept	. 299
		13.3.4 Fehlerbehebung im neuen HRL und im Schnelldreherlager	300
	13.4	Merkmale und Besonderheiten des Konzepts	300
	13.5	Klassifizierung der Kommissioniersysteme	302
	13.6	Daten und Fakten	303
	13.7	Einsatzbereiche des Kommissioniersystems	304
14	Best	Practice im Lebensmittelhandel	305
	14.1	Aufgabenstellung und Ziele	
	14.2	Beschreibung der gewählten Lösung	305
		14.2.1 RF-Terminal	
		14.2.2 Pick by Voice	
	14.3	Merkmale und Besonderheiten des Konzepts	
	14.4	Klassifikation des Kommissioniersytems	
	14.5	Daten und Fakten	
	14.6	Einsatzbereiche des Kommissioniersystems	
	14.7	· · · · · · · · · · · · · · · · · · ·	
15	Komr	nissionierung und Retourenmanagement – Das Integrierte Versandhaus	
	15.1	Der Distanzhandel ist tot – es lebe der Distanzhandel	
	15.2	Die Versandhaus Walz GmbH	
		15.2.1 Entstehung	
		15.2.2 House of brands	
		15.2.3 Zahlen und Fakten	
	15.3	Versandhaus im Versandhaus – Retourenbearbeitung bei Walz	
		15.3.1 Produktsortiment	
		15.3.2 Definition Retouren	
		15.3.3 Prozesse bei der Retourenbearbeitung	
		15.3.4 Grundsatzüberlegungen	
		15.3.5 Kundenaufträge sind so unterschiedlich wie die Kunden selbst	
		15.3.6 IST- und SOLL-Prozess	
		15.3.7 Retourenrenner versus Versandpenner	
	45.4	15.3.8 B2B- und B2C-Abwicklung im Integrierten Versandhaus	
		Zusammenfassung und Ausblick	
16		nissionierung im Teleshopping	
	16.1	Aufgabenstellung und Ziele	
	16.2	Beschreibung der gewählten Lösung	
		16.2.1 Vorzone Hochregallager (HRL)	
		16.2.2 Vorzone automatisches Kartonlager	
	16.2	16.2.3 Forward Picking Area (FPA)	
	16.3	Merkmale und Besonderheiten des Konzepts	
	16.4	Klassifikation des Kommissioniersystems	336

	16.5	Daten und Fakten	336
	16.6	Einsatzbereiche des Kommissioniersystems	337
\Rightarrow	TEIL	3: Innovative Kommissioniersysteme	339
17	Swiss	log: Elektrohängebahn mit Terminals (CaddyPick)	340
	17.1	Aufgabenstellung und Ziele	340
	17.2	Beschreibung der gewählten Lösung	340
		17.2.1 Modul 1: Nachschub & Einlagerung	341
		17.2.2 Modul 2: Kommissionierung	341
	17.3	Merkmale und Besonderheiten des Konzepts	343
		17.3.1 Integriertes Wägesystem	344
		17.3.2 Flexibles System minimiert Tot- und Nebenzeiten	345
	17.4	Klassifikation des Kommissioniersystems	
	17.5	Daten und Fakten	346
	17.6	Einsatzbereiche des Kommissioniersystems	347
	17.7	Vorteile des gewählten Kommissioniersystems (Kundennutzen)	348
18	Dema	tic: Multishuttle-Einsatz im Kommissionierbereich	350
	18.1	Einführung	350
		18.1.1 Multishuttle Roaming	350
		18.1.2 Multishuttle Captive	350
	18.2	Das Kommissionierlager der Firma Ferdinand Groß	351
	18.3	Die Umsetzung	
	18.4	Umwidmung bestehender Systeme	354
	18.5	Die Kommissionierung	
	18.6	Erweiterungsmöglichkeiten	
19	Savoy	e: PTS Picking Tray System – die Geschichte einer Innovation	
	19.1	Eine Welt im Wandel	
	19.2	Die Suche nach dem Weg	
		19.2.1 Die Schlüsselfaktoren	
		19.2.2 Was wollen die Kunden (nicht)?	
	19.3	Die Geburt eines Systems	
	19.4	Ein kleiner Steckbrief	
		19.4.1 Die Fahrzeuge	
		19.4.2 Der Kommissionierarbeitsplatz	
	19.5	Das Team ist der Star!	
	19.6	PTS Picking Tray System auf der Überholspur	
20		ore: HPPS – High Performance Picking System	
	20.1	Aufgabenstellung	
	20.2	Beschreibung	
	20.3	Merkmale und Besonderheiten des Konzepts	
		20.3.1 Merkmale	
		20.3.2 Besonderheiten	
	20.4	Klassifikation des Kommissioniersystems	
	20.5	Daten und Fakten	
	20.6	Einsatzbereiche des Kommissioniersystems	
	20.7	Vorteile von HPPS (Kundennutzen)	
21		erlande Industries: Crossbelt-Sorter	
	21.1	Aufgabenstellung und Ziele	
	21.2	Kommissioniertechnik und Materialflussrechner aus einer Hand	383

		21.2.1 Die Kommissionierabläufe im täglichen Betrieb	383
	21.3	Merkmale und Besonderheiten des Konzepts	
		21.3.1 Merkmale	388
		21.3.2 Besonderheiten	389
	21.4	Klassifikation des Kommissioniersystems	
	21.5	Daten und Fakten	
		21.5.1 Technische Daten	
		21.5.2 Leistungsdaten	391
	21.6	Einsatzbereiche des Kommissioniersystems.	392
	21.7	Einordnung in Leistungsdiagramm	
	21.8	Vorteile des gewählten Kommissioniersystems (Kundennutzen)	393
22	Witro	n: OPM – das voll mechanisierte Distributionszentrum	
	22.1	Die "Zero-Touch-Vision" wird Wirklichkeit	396
	22.2	Lückenschluss zur voll mechanisierten Intralogistik	397
	22.3	Aufträge "produzieren" statt kommissionieren	
	22.4	Auswirkungen auf die Supply Chain	406
	22.5	OPM-Features auf einen Blick	407
	22.6	Vorteile des OPM-Konzeptes auf einen Blick	
	22.7	Teil der Witron-Modulstrategie	
	22.8	Innovationen an Anforderungen des Marktes ausgerichtet	
	22.9	Einsatz von OPM auch im Frische- und Tiefkühlbereich möglich	
	22.10	Die nächste OPM-Generation	
23	TGW:	Hochleistungskommissionierung	411
	23.1	Anforderungen an Kommissioniersysteme	411
	23.2	Typen von Kommissioniersystemen	411
		23.2.1 Beispiel: Vollautomatisches Kommissioniersystem Auto Pick	411
		23.2.2 Beispiel: Hochautomatisiertes Kommissioniersystem	412
	23.3	Systematik von Kommissioniersystemen	412
		23.3.1 Vollautomatisierte Kommissionierung	413
		23.3.2 Ware-zum-Mann-Systeme	414
		23.3.3 Mann-zur-Ware-Systeme	417
		23.3.4 Optimierung der Auftragsdurchlaufzeit	417
	23.4	Nachschub- und Nebenprozesse	418
		23.4.1 Automatisches Kleinteilelager	419
		23.4.2 Sequenzierung und Synchronisierung der Warenströme	420
	23.5	Entscheidungsrelevante Faktoren: Kosten und Qualität	421
		4: PRAXISLEITFADEN	
24	Leitfa	den zur Auswahl des optimalen Kommissioniersystems	
	24.1	Einleitung	
	24.2	Leitfaden zur Systemplanung	426
		24.2.1 Phase eins: lst-Analyse und Grundlagenermittlung	426
		24.2.2 Phase zwei: Definition der Planungsbasis	
		24.2.3 Phase drei: Untersuchung von Lösungsalternativen	
		24.2.4 Phase vier: Wirtschaftlichkeitsvergleich	434
		24.2.5 Phase fünf: Entscheidungsfindung	438
	24.3	Planungshilfen	
		24.3.1 Computertechnische Planungshilfen	439
		24 3 2 Externe Planungshilfen	440

		24.3.3 Abhängige Planung 440 24.3.4 Unabhängige Planung 441
		5: Trends und Entwicklung
	25.1	Rückblick
	25.2	Gegenwart
	25.3	Bestellverhalten ändert sich
	25.4	Anforderungen
	25.5	Trends
		25.5.1 Manuelle und automatisierte Systeme
		25.5.2 Steigender Durchsatz
		25.5.3 Lösungsansätze
26	Gloss	ar
27	Autor	enverzeichnis 479

VORWORT

Die Kommissionierung ist das Herzstück der meisten Distributions- und Logistikzentren. Hier wird der Auftrag des Kunden "produziert". Qualität und Schnelligkeit der Kommissionierung sind wesentliche Faktoren für eine erfolgreiche Kundenbindung. An den Bedürfnissen des Marktes ausgerichtete Kommissioniersysteme leisten einen entscheidenden Beitrag für die Wettbewerbsfähigkeit von Unternehmen.

Gleichzeitig machen die Kosten der Kommissionierung einen erheblichen Teil der Logistikkosten aus und bedürfen somit besonderer Aufmerksamkeit.

In den vergangenen Jahren wurde eine Fülle von innovativen, produktiven und qualitätsorientierten Kommissioniersystemen entwickelt und implementiert. Bestehende Systeme haben sich den verändernden Anforderungen angepasst und wurden durch Reorganisation fit gemacht. Dennoch bleibt das Thema Kommissionierung ein Dauerbrenner. Auch in Zukunft wird es sowohl intelligente manuelle Konzepte als auch weiter automatisierte Systeme, vor allem aber eine wirtschaftliche und flexible Kombination von beiden geben.

Dieses Buch leistet einen Beitrag dazu, die ganze Bandbreite der Kommissionierung erstmals - oder auch neu - zu entdecken und vor allem konkret verwertbar zu machen. Es gibt Anregungen für die Planung, die Reorganisation und das Tuning von Kommissioniersystemen.

Teil 1 "Grundlagen der Kommissionierung" gibt in vier Beiträgen einen fundierten Überblick über Grundlagen, Systematik, Planung und Gestaltung von Kommissioniersystemen. Drei weitere Kapitel beschäftigen sich mit dem Menschen in der Kommissionierung. Controlling und IT-Unterstützung in der Kommissionierung werden ebenso behandelt wie eine innovative Wegstrategie und ein Konzept zur Ermittlung der optimalen Kommissionierfachgröße.

Eine Fülle von Anregungen vermitteln die Best-Practice-Beispiele aus Industrieund Handelsunternehmen verschiedener Branchen in Teil 2.

Teil 3 gibt einen interessanten Überblick über innovative Kommissioniersysteme namhafter Anbieter von intralogistischen Systemen.

Einen Leitfaden für die Auswahl des optimalen Kommissioniersystems finden Sie in Teil 4.

Trends und die zukünftigen Entwicklungen der Kommissionierung vermittelt abschließend Teil 5 des Buches.

Das Buch ist von Praktikern für Praktiker geschrieben. Es soll Geschäftführer und Verantwortliche in Logistik, Lager, Transport und Supply Chain Management in Industrie-, Handels- und Dienstleistungsunternehmen in ihrer Tätigkeit inspirieren, sie konstruktiv im Alltag unterstützen und ihnen wertvolle Arbeitsinstrumente an die Hand geben.

Dozenten und Studierende der einschlägigen Fachbereiche finden nützliche Hinweise für Studium und Lehre.

Allen Personen, die uns bei der Herausgabe des Buches tatkräftig unterstützt haben, gilt unser besonderer Dank.

Hervorzuheben sind die Autoren, die sich neben ihrem stressbelasteten Alltag die Zeit genommen haben, ihr Wissen und ihre Erfahrung in ihrem Beitrag zu diesem Buch an Sie, liebe Leser, weiter zu geben. Wir danken unseren Familien für die Geduld und Toleranz gegenüber unserer "Heimarbeit" an diesem Buch. Gleiches gilt auch für die Familien der übrigen Autoren.

Die Herausgabe des Buches wäre ohne die Unterstützung des Verlags Springer Transport Media, hier insbesondere in Person von Herrn Ulf Sundermann, dessen Lektorat und konstruktive Kritik, nicht möglich gewesen. Dafür bedanken wir uns herzlich.

Wir wünschen Ihnen und uns, dass Sie beim Lesen des Buches neue Impulse für Ihre tägliche Arbeit erhalten und die eine oder andere Idee entdecken, das Beschriebene/Gelesene in Ihrer Praxis umzusetzen. Viel Erfolg!

Jede Form von Kritik, Anregungen, Fragen und Lob ist ganz ausdrücklich erwünscht und herzlichen willkommen. Gerne auch per E-Mail an michael.pulverich@gl-kayser.de oder joerg.schietinger@hahn-kolb.de.

Marktheidenfeld und Esslingen im September 2009

Michael Pulverich Jörg Schietinger

1

1.2 Stellenwert der Kommissionierung

Die Kommissionierung versteht sich als Teilgebiet der Logistik. Ziel eines Kommissioniersystems ist die (möglichst effiziente und qualitativ hinreichende) Herstellung versandbereiter Lieferungen.

Die Gestaltung der vor- und nachgeschalteten Prozesse, wie z. B. Lagerung, Nachschub, ein- oder zweistufige Kommissionierung, Zusammenstellung von Lieferungen zu Sendungen/Touren etc., dient der Optimierung des Ressourceneinsatzes.

Dabei ist die Kommissionierung sowohl aus Kosten- und Aufwandssicht als auch aus Kunden- und Wettbewerbssicht der Kernprozess im Lager. In der Kommissionierung entscheidet sich die Lieferqualität zum Kunden und somit auch die Kundenzufriedenheit. Das folgende Diagramm zeigt den Anteil der Kommissionierkosten bezüglich der Lagerkosten und des Umsatzes. (Die zugrunde liegenden Daten verstehen sich als statistische Mittelwerte aus verschiedenen Projekterhebungen, die je nach Branche und Ausprägung differieren können.)

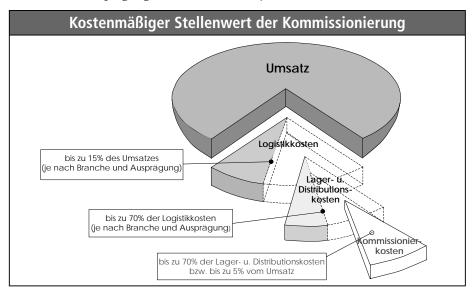


Abb. 1: Kostenmäßiger Stellenwert der Kommissionierung

Im Kommissionierprozess werden aus einem Gesamtbestand des Sortiments Teilmengen auftragsbezogen zusammengestellt. Anwendungen finden sich vor allem in der Produktion und im Handel. Dabei reduziert die hohe Komplexität (z. B. kleine Verpackungseinheiten) die Möglichkeiten einer weitreichenden Automatisierung, was wiederum den Einsatz von Kommissionierautomaten und -robotern auf Ausnahmefälle minimiert.

1

Somit ergeben sich folgende Auswirkungen auf Kommissioniersysteme:

- Die Kommissionierung ist in der Regel sehr personalintensiv.
- Manuelle Kommissioniersysteme werden auch zukünftig eine große Bedeutung haben.
- Die Anforderungen an Kommissioniersysteme werden weiter wachsen.

1.3 Anforderungen

Sobald die "Dinge" anfangen, sich zu bewegen, ist die Logistik gefragt. Die "Dinge" im (Material-)Fluss zu halten, könnte als erstes Axiom der Logistik postuliert werden. Eben dieser Materialfluss ist in den letzten Jahren in unterschiedlichen Dimensionen exponentiell gewachsen.

Zum einen beteiligen sich immer mehr Menschen und Unternehmen am globalen Handel und zum anderen wollen diese Menschen immer schneller immer individuellere Produkte haben. In Summe ergibt sich ein kritischer Anstieg der Komplexität und Dynamik, der nur noch scheinbar mit den heuristischen Lösungen heutiger Tage zu steuern ist.

Der häufig zitierte Paradigmenwechsel in Richtung echtzeitnaher, dezentraler, individueller, flexibler und adaptiver Lösungen kann nicht mit konventionellen Mitteln vollzogen werden. Es gilt, neue Wege zu beschreiten, und zwar in allen Bereichen der Logistik. Das Supply Chain Management, die Intralogistik und der Transport der Waren – all dies wird zwangsläufig neu zu organisieren sein, will man die Dinge im Fluss halten.

Die Intralogistik

- umfasst als Branchenname die Organisation, Durchführung und Optimierung innerbetrieblicher Materialflüsse in Unternehmen der Industrie, des Handels und in öffentlichen Einrichtungen mittels technischer Systeme und Dienstleistungen,
- steuert im Rahmen des Supply Chain Managements den Materialfluss entlang der Wertschöpfungskette und
- ⇒ beschreibt den innerbetrieblichen Materialfluss, der zwischen den unterschiedlichsten Logistikknoten stattfindet (der Materialfluss in der Produktion, in Warenverteilzentren und in Flug- und Seehäfen) sowie den dazugehörigen Informationsfluss (in der Logistik).

Die Steuerung intralogistischer Systeme wird verstärkt durch die Integration informationstechnischer Prozesse bestimmt. Dies hat zunehmend die automatisierte und transparente Bereitstellung aller logistischen Dienstleistungen eines Unternehmens für die Geschäftspartner und Endkunden über das Internet zur Folge. Shopund Portallösungen gehören mittlerweile zur Standardausrüstung vieler Unternehmen. Die Integration weiterer IT-Systeme (Warenwirtschaft, Lagerverwaltung, Customer Relationship Management, Content Management etc.) führt zu komplexen und integrierten logistischen Netzwerken.

Bei B2B-Beziehungen reduzieren die "Kunden" (z. B. der Einzelhandel) ihre eige-

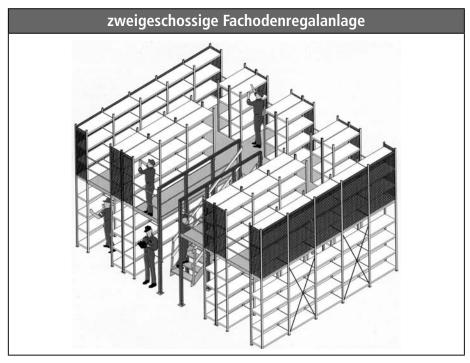


Abb. 9: zweigeschossige Fachodenregalanlage

(Quelle: Bito)

Vorteile:

- flexibel (z. B. gegenüber Strukturveränderungen, da einfach umzurüsten)
- gleichzeitige Bearbeitung von Eilaufträgen, Einzelaufträgen und Auftragsserien möglich
- keine Ausfallgefahren im Vergleich zu automatischen Systemen
- Nutzung der Raumhöhe durch integrierte Bühne möglich
- geringe Investitionskosten
- kombinierbar mit versorgender/umlaufender Fördertechnik
- verschiedene Lagerstrategien darstellbar (parallele Kommissionierung, Weiterreichsystem etc.)

Nachteile:

- teilweise schlechte Ergonomie bei Kommissionierung aus den untersten oder obersten Ebenen
- höherer Personalaufwand, da die Kommissionierleistung nicht so hoch ist, wie bei automatischen Ware-zum-Mann-Systemen (z. B. AKL)
- relativ lange Wegstrecken
- bei Einsatz von Lagerbehältern ist die Lagerraumnutzung geringer
- bei großen Artikelbeständen Notwendigkeit eines getrennten Reservelagers
- bei mehrgeschossigen Anlagen:
 - zusätzlicher vertikaler Transportaufwand (über Treppen, über Lastenaufzug)
 - eingeschränkte Luft- und Lichtverhältnisse in den Ebenen

12 KOMMISSIONIERUNG IN DER BAU-SERVICEINDUSTRIE AM BEISPIEL DER HILTI DEUTSCHLAND GMBH

(Heinrich Becker)

12.1 Aufgabenstellung und Ziele

Hilti Deutschland GmbH ist eine Direktvertriebsgesellschaft, die mehrere 100.000 Kunden und um die 130 Hilticenter, die als Point of Sales fungieren, mit Produkten beliefert.

Das Distributionscenter in Oberhausen ist für die Auslieferung in ganz Deutschland sowie den Beneluxstaaten zuständig, kann im Emergency-Fall aber auch weitere Länder beliefern.

Als Direct Seller ergeben sich besondere Anforderungen an die Kundenauftragsabwicklung:

Level of Service

(bis auf K den Kunden als Flatrates berechnet)

- Normalversandarten mit 96Prozent Servicegrad (Paket-/Paletten-Logistikdienstleister):
 - Standard = zwei bis drei Tage (wird genutzt, um ein Load Leveling im Lager durchzuführen).
 - Muss heute das Distributionscenter verlassen.
- **►** Expressversandarten mit 99,9 Prozent Servicegrad (Express-Logistikdienstleister):
 - H (high noon): Zustellung bis 12 Uhr am Folgetag.
 - Zehn-Uhr-Zustellung: bis 10 Uhr Folgetag.
 - Garantierte Zustellung im Laufe des Folgetags.
 - Blitzdienst mit Zustellung same day (90 Prozent flächendeckend in D, 100 Prozent in Benelux).
 - Kurierfahrt (regional).

⇒ Sonderanforderungen:

- Zustellung am Samstag
- Terminzustellung an bestimmtem Tag
- Zustellung auf Baustellen
- Zustellung mit Vorankündigung
- Nachnahme

Produktspektrum und weitere Anforderungen an die Kommissionierung

sperrig: Montageschienen bis 6 Meter Länge (hier nicht weiter behandelt).

13

13 ZF TRADING – BEST PRACTICE IM KFZ-TEILEHANDEL

(Dominik Bühring)

Die ZF Trading GmbH, das Handelsunternehmen der ZF Friedrichshafen AG, ist der technisch kompetente Service Partner im Automobilteile-Bereich. Die Kernproduktgruppen werden unter folgenden, lang etablierten Markennamen vertrieben:

- Sachs (Kupplungen und Stoßdämpfer)
- Lemförder (Fahrwerk/Lenkung und Gummi-Metall)
- ➡ Boge (Stoßdämpfer)
- ⇒ ZF Parts (Lenksysteme)

Die Logistik der ZF Trading wird in Schweinfurt und Bremen durchgeführt. In diesem Artikel möchten wir die Erweiterung und den teilweisen Neubau des Trading Logistic Center (TLC) in Schweinfurt näher betrachten.

Die Logistik der ZF Trading GmbH					
	Sendungen/ Tag bzw. Lkw- Ladungen	davon Ex- press	verkaufs- fähige Teile- nummern	Behälter- plätze	Paletten- plätze
Schweinfurt	600 Sendungen bzw. 20 Lkw- Ladungen	350	15.000 50.000 (weltweit)	34.000	22.000
Bremen	140 Sendungen bzw. 8 Lkw- Ladungen	70	13.000	50.000	18.000

Abb. 1: Die Logistik der ZF Trading GmbH (Stand 2007)

Die ZF Trading lagert in Schweinfurt Automobil-Ersatzteile der Marken Sachs und Boge, von hier aus wird der internationale Ersatzteilmarkt beliefert.

13.1 Einführende Beschreibung

Herausforderungen an die Distribution von Ersatzteilen im Allgemeinen stellt die teils sehr unhandliche Form sowie das Gewicht der Teile dar. Durch die asymetrischen Formen ist der Volumenzuwachs durch die Verpackung enorm. Dement-

19 SAVOYE: PTS PICKING TRAY SYSTEM — DIE GESCHICHTE EINER INNOVATION

(Jean-David Attal)

19.1 Eine Welt im Wandel

Savoye war in den achtziger Jahren keine Firma, der man die Entwicklung eines derart revolutionären Ware-zum-Mann-Systems wie PTS Picking Tray System zugetraut hätte: Das Unternehmen entwickelte sich vom regionalen Verpackungsspezialisten zum Systemlieferanten für Kommissionierlösungen nach dem Prinzip "Mann zur Ware" mit Kommissionierstationen, einem hoch interessanten Konzept zum automatischen Verpacken (PAC600) sowie mit besonders auf Pick-&-Pack-Lösungen ausgerichteten Lagerverwaltungs- und Materialflusssystemen.

Abb. 1: Kommissioniersystem nach dem Pick-&-Pack-Prinzip

Diese universelle Kombination war auf viele Branchen und Unternehmen anpassbar. Der Schwerpunkt von Savoye lag dabei mehr im Wissen über die Bedürfnisse und Kennzahlen der Branchen als in der technischen Diversifizierung. Zu Beginn des neuen Jahrtausends konnte Savoye eine zunehmende Vielfalt an Technologien in den Projekten feststellen: Regalbediengeräte wurden im Buchversand eingesetzt, A-Frames dienten der Automatisierung der Kommissionierung von Büroartikeln, Hochleistungssorter hielten Einzug in den großen Distributionszentren der Textil-

19

industrie. Dies zeigte die Notwendigkeit und den Bedarf, den bisherigen Ansatz – eine vernünftige Kompromisslösung für alle Branchen – zu überdenken. Nicht die Vermarktung der eigenen Produkte, sondern die Suche nach der optimalen Lösung für den jeweiligen Kunden sollte im Vordergrund stehen.

19.2 Die Suche nach dem Weg

Eine interne Arbeitsgruppe machte sich auf die Suche nach der Antwort auf die Frage: "Welche Technologie und welche Tools für welchen Kunden?" Grundannahme bei dieser Vorgehensweise war, dass Branchenkenntnis zwar wichtig, aber nicht das einzige Instrument sein kann, da es das Verständnis für neue Vertriebswege blockiert. Es ist z. B. eine komplett andere Aufgabe, mit einem Logistikzentrum Läden mit Büchern zu beliefern als im Internetgeschäft 40-mal so viele Aufträge für die gleiche Anzahl Bücher zu bearbeiten. Eine Klassifizierung von Projekten, Unternehmen und Technologien führte zu einer Einschätzung, welches Konzept oder welche Technologie geeignet oder welche weniger hilfreich sein könnte. Ergebnisse dieser Überlegungen waren beispielsweise, dass

- ➡ AKL-Systeme mit chaotischer Lagerung in manchen Fällen flexibler sind als statische Kommissionieranlagen, die eine gewisse manuelle Reorganisation erfordern.
- elektronische Kommissioniersysteme (Pick by Voice, Pick by Light, Datenfunk, aber auch RFID) besonders für stark qualitätsorientierte Anforderungen geeignet sind.
- ⇒ in manchen Branchen der Kostendruck extrem ist eine Frage des Überlebens. Hier sind hoch automatisierte Lösungen wie automatischer Auftragsstart oder automatische Verpackungslösungen besonders relevant, während sonst z. B. die Flexibilität einer Lösung den Ausschlag gibt.

19.2.1 Die Schlüsselfaktoren

Nach einer Analyse unterschiedlichster Faktoren wie

- der Branchen (Bücher, Büroartikel, Kosmetik, ...)
- der Aufgabe in der logistischen Prozesskette (Hersteller, Großhändler, Einzelhändler, ...)
- ⇒ der Größe der zu handhabenden Einheiten (Paletten, Behälter, Einzelteile, ...)

identifizierte Savoye letztendlich drei entscheidende Parameter, die die Anforderungen an die logistischen Prozesse beschreiben:

- ➡ die Qualität (Menge, Verpackung, Rückverfolgbarkeit, ...)
- ⇒ die Kosten (Produktivität, Auslastung, Platzbedarf, Frachtkosten, ...)
- die Flexibilität (Spitzen, Aktionen, stark schwankende Verbrauche, kurze Lieferzeiten, ...)

Keines dieser Elemente ist isoliert zu finden. Es ist aber wichtig zu wissen, ob es ein Kriterium unter vielen oder ausschlaggebend, also eine Frage des Überlebens ist. Bei der Einordnung der Anforderungen und der Technologien bzw. Tools in eine Matrix lässt sich einfach herausfinden, was am besten zueinander passt.

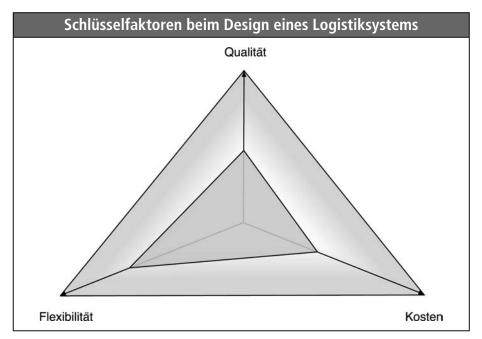


Abb. 2: Schlüsselfaktoren beim Design eines Logistiksystems

Das Ergebnis der Arbeitsgruppe war aber nicht nur die Erkenntnis über die "Treiber" in der Logistik, sondern auch der Startpunkt für ein Innovationsprogramm, welches eine Reihe neuer unterschiedlicher Technologien bei Savoye hervorbrachte.

Es ergab sich daraus die Grundlage für Entscheidungen, in welchen Bereichen in die Entwicklung eigener Produkte investiert oder auf die Integration von am Markt verfügbaren Technologien gesetzt werden soll (- ob dies dauerhaft erfolgt oder mit der Zeit ein eigenes Produkt entwickelt wird, ist dabei mehr eine Frage der strategischen Ausrichtung).

Um die ganze Bandbreite unserer Kunden vor allem im Bereich flexibler, leistungsfähiger Anlagen z. B. im Handel, E-Business oder Bekleidung abdecken zu können, war klar, dass sowohl Hochleistungs-Sorter als auch leistungsfähige Warezum-Mann-Systeme benötigt werden würden. Die Entscheidung zur Entwicklung einer Ware-zum-Mann-Lösung wurde aufgrund der vielfältigen Einsatzmöglichkeiten zur Kommissionierung, als Sortierpuffer oder für die Retourenabwicklung getroffen, während Sorterlösungen weiterhin über Partner beschafft und integriert werden sollten. Die neue Lösung sollte das Schlüsselelement flexibler Logistiklösungen darstellen. Die zentralen innovativen Technologien sollten im Haus entwickelt und geschützt werden.

19.2.2 Was wollen die Kunden (nicht)?

Die Suche nach einer Lösung begann ganz konventionell mit einem Blick auf die vorhandenen Technologien. Eine wertvolle Informationsquelle sind aber auch im-

TEIL 4: PRAXISLEITFADEN

24 LEITFADEN ZUR AUSWAHL DES OPTIMALEN KOMMISSIONIER-SYSTEMS

(Reinhold Hoffbauer)

24.1 Einleitung

Die Kommissionierung gehört regelmäßig zu den bedeutendsten Funktionen eines Logistikbetriebes (Fertigwarenlager, Rohwarenlager, Montagelager, Regionallager, Zentrallager, Multi-User-Zentrum eines Logistikdienstleiters u. a.) und ist somit wesentlicher Bestandteil der gesamten Supply Chain eines Unternehmens. Aufgrund ihrer großen Bedeutung für Service, Kosten, Image und Qualität spielen die Auswahl des optimalen Kommissioniersystems und die optimale Verflechtung mit anderen Unternehmens- (Vertrieb, Marketing, Produktion etc.) und Logistikfunktionen (Wareneingang, Lager, Nachschub, Versand, Transportsteuerung etc.) im betrieblichen Alltag eine große Rolle.

Das gesamte Kommissioniersystem eines Logistikbetriebs strukturiert sich in der Praxis häufig in mehrere, z. B. nach der Teilegröße (Klein-, Mittel-, Großteile) oder der Zugriffshäufigkeit (Schnelldreher, Langsamdreher), untergliederte Teilbereiche sowie in Sonderbereiche wie z. B. Gefahrgut, Kühlgut und Weitere.

Für die einzelnen Teilbereiche eines Kommissioniersystems, kommen jeweils unterschiedliche Kommissioniertechniken zum Einsatz, wie z. B.

- ⇒ für das Kommissionieren von Kleinteilen
 - Mann-zur-Ware-Kommissionierung (WzM) aus einer mehrgeschossigen Fachbodenregalanlage oder
 - Ware-zum-Mann-Kommissionierung (MzW) aus einem automatischen Kleinteilelager (AKL) oder
 - andere Techniken
- ⇒ für das Kommissionieren von palettierter Ware (mittelgroße Teile)
 - Mann-zur-Ware-Kommissionierung mit Hilfe von Kommissionierfahrzeugen aus den untersten Ebenen im Breitganglager oder
 - Ware-zum-Mann-Kommissionierung aus einem automatischen Palettenlager (APL) oder
 - andere Techniken
- für das Kommissionieren von Langteilen (schweres Langgut)
 - Auslagerung von Langgut-Gebinden (z. B. Langgut-Gestelle) aus einem Kragarmlager mit Hilfe eines Vier-Wege-Staplers für die Ware-zum-Mann-Kommissionierung (ggf. kranunterstützt) an statischen Kommissionierplätzen oder
 - andere Techniken

Die Findung eines optimalen Kommissioniersystems, beispielsweise im Rahmen

- iner Reorganisation (Optimierung und Erweiterung bestehender Anlagen),
- ⇒ eines kompletten Neubauvorhabens auf der "grünen Wiese" oder
- ⇒ eines Outsourcing (z. B. Umzug in eine Multi-User-fähige Logistikimmobilie eines Logistikdienstleisters),

wächst daher in der Praxis sehr schnell zu einer komplexen Aufgabe heran, die nur integrativ, d. h. durch einen "ganzheitlichen Planungsansatz", zu lösen ist, und zwar im Sinne nachfolgender Definition:

DEFINITION:

Das optimale Kommissioniersystem ist jenes, welches unter Berücksichtigung aller Wechselwirkungen mit anderen Logistikfunktionen und unter Berücksichtigung aller unternehmensspezifischen Rand- und Rahmenbedingungen (wirtschaftlicher, strategischer, baulicher und organisatorischer Art) optimal für das logistische Gesamtsystem hinsichtlich

- Servicegrad,
- Wirtschaftlichkeit und
- Flexibilität gegenüber Veränderungen (z. B. bedingt durch Wachstum, geänderte Auftragsstrukturen, gesetzliche Rahmenbedingungen etc.)

ist.

Dies führt in der Praxis zu sehr individuellen Lösungen, die sich nicht pauschal auf ähnlich erscheinende Aufgabenstellungen übertragen lassen.

Für die Lösungsfindung ist es dabei zwar hilfreich, eine Planungsaufgabe mit einer überschaubaren Anzahl an logistischen Strukturdaten (Anzahl Artikel, Anzahl Auftragspositionen, ABC-Kennzahlen etc.) zu charakterisieren und zu klassifizieren, um Vergleiche mit ähnlich gelagerten Fällen – innerhalb der Branche, aber auch branchenübergreifend – vornehmen zu können; der Versuch jedoch, allein aus diesen logistischen Strukturdaten das optimale Kommissioniersystem abzuleiten, die Lösungsfindung quasi einem "Algorithmus" zu überlassen, ist deutlich zu kurz gesprungen und kaum geeignet, die Akzeptanz des Anwenders zu finden: Zu vielfältig sind die planerischen Rahmen- und Randbedingungen (siehe Kapitel 4) und zu unterschiedlich sind nicht zuletzt die Bewertungsmaßstäbe bei dem bzw. den Entscheidungsträger/n.

Da es bei der Installation neuer Kommissioniersysteme häufig um millionenschwere Investitionen geht, möchte der Kunde nicht einem pauschalisierenden "Algorithmus" folgen, sondern auf der Entscheidungsebene und auf den operativen Führungsebenen (Logistik-/IT-Leiter, WE-, Kommissionier-, Versandleiter, Vorarbeiter etc.) "mitgenommen" werden, eigene Ideen einbringen (die im Unternehmen häufig über Jahre gereift sind) und um die beste Lösung aus einer Anzahl verschiedener Lösungsalternativen "ringen", um am Ende eine Entscheidung treffen zu können, zu der alle Beteiligten und nicht zuletzt das Bauchgefühl "ja" sagen.

Voraussetzung hierfür sind die Kenntnis der vielfältigen Kommissioniertechniken und deren sinnvolle Kombinationsmöglichkeiten, langjährige Projekterfahrung in der Planung und der Realisierung dieser Techniken und eine unvoreingenommene (lösungsneutrale) Grundeinstellung.

Das obige zusammenfassend lassen sich zur Findung des optimalen Kommissioniersystems folgende Planungsgrundsätze ableiten:

PLANUNGSGRUNDSÄTZE:

- Ganzheitliche Betrachtungsweise (Berücksichtigung aller Wechselwirkungen und Randbedingungen gemäß obiger Definition)
- ➡ Vergleich alternativer Lösungsansätze hinsichtlich Wirtschaftlichkeit, Servicegrad sowie Flexibilität gegenüber Veränderungen
- **► Kenntnis** der organisatorischen und technischen Kommissioniermethoden
- Erfahrung bei Planung und Realisierung der verschiedenen Kommissioniertechniken
- Lösungsneutralität (alle Lösungen sind grundsätzlich gleichberechtigt)

Exakt diese Planungsgrundsätze sind es, die ein unabhängiger, d. h. frei von Interessen Dritter agierender Logistikplaner im Rahmen einer intralogistischen Systemplanung verfolgt. Seine Vorgehensweise bei einer Systemplanung wird somit zum Leitfaden für die Auswahl des optimalen Kommissioniersystems.

Der nun folgende Leitfaden gibt die Erfahrungen des Verfassers in seiner Tätigkeit als unabhängiger Planer wieder, der als beruflicher Quereinsteiger aus der Physik kommend seit nunmehr zehn Jahren für Industrie, Handel und öffentliche Einrichtungen intralogistische Strategien und Systeme konzipiert und umsetzt.

24.2 Leitfaden zur Systemplanung

Basierend auf einer klar definierten Aufgabenstellung lässt sich die Systemplanung in 5 Phasen aufteilen:

- 1. Ist-Analyse und Grundlagenermittlung
- 2. Definition der Planungsbasis
- Untersuchung von Lösungsalternativen
- Wirtschaftlichkeitsvergleich
- Resümee und Entscheidungsfindung

24.2.1 Phase eins: Ist-Analyse und Grundlagenermittlung

In dieser Phase werden die Grundlagen ermittelt, die für die Auslegung der in den folgenden Phasen auszuwählenden Systemelemente notwendig sind. Hierbei handelt es sich um statische und dynamische Daten zur Bestimmung von Kapazitäten und Materialflüssen. Sie werden im Folgenden noch näher beschrieben.

Zusätzlich zu den statischen und dynamischen Daten sind weitere logistische Grundlagen des Ist-Zustands (wie Personalzahlen, Produktivitäten, die grundsätzlichen Prozesse, die mit der Kommissionierung in Wechselwirkung stehenden betrieblichen Funktionen) zu ermitteln sowie sonstige Informationen (z. B. Layouts der vorhandenen Baulichkeiten und Flächen), die für die Erfüllung der Logistikaufgabe erforderlich sind.

Neben den logistischen Daten sind darüber hinaus die individuellen Rahmen-